
Throughout the years, application architecture has evolved from client-server to service-oriented to 
cloud-native microservices-based architectures. This evolution significantly impacts the application 
development methods and approaches to scalability, security, and, most importantly, application delivery. 
Unfortunately, the industry's current state of Application Delivery Controller (ADC) solutions, also known 
as load balancers, falls short. 

The demand for services has evolved, and what once required just one service now necessitates multiple 
distinct services. In this new era of service explosion, it will be challenging for IT teams to effectively 
handle the lifecycle management of applications unless the modern-day ADC is “microservices aware” 
and has the appropriate automation, enabled via APIs, automation, and orchestration frameworks, to 
provision, configure and manage every microservice. 

This paper describes how application architectures have evolved and how KubeLB's distributed 
microservices can dramatically reduce the operational impact of microservices-based application 
architectures.



The Monolithic Architecture
From the inception of web application development, the predominant enterprise application architecture 
involved bundling all the application’s server-side components into a single unit. Numerous enterprise 
Java applications, for instance, often consist of a solitary WAR or EAR file.

Consider developing an online store that accepts customer orders, verifies inventory and available credit, 
and handles shipments. This application comprises various components, including the StoreFront UI, 
responsible for the user interface and services dedicated to managing the product catalog, processing 
orders, and handling customer accounts. These services utilize a shared domain model, including 
Product, Order, and Customer. Despite its logically modular design, the application is deployed as a 
monolith. A single WAR file runs on a web container like Tomcat in Java.

This so-called monolithic architecture has several benefits. Developing monolithic applications is simple 
because IDEs and other development tools are oriented toward creating a single application. Testing and 
deploying them is also straightforward since everything coexists within a single application.

This approach works well for relatively small applications. Nevertheless, when dealing with complex 
applications, the monolithic architecture becomes cumbersome. It also poses challenges in 

Cloud Native Multi Tenant Load Balancing

/2



The cloud-native microservices-based Architecture

The cloud-native microservices-based architecture is designed to address the 
issues seen by the monolithic architecture. The services outlined in the monolithic 
application architecture are disassembled into distinct services and deployed 
independently on separate hosts. Each microservice is dedicated to a specific 
business function, solely encompassing the operations essential to that particular 
business function. This architecture utilizes tools like Kubernetes, ArgoCD, flux, 
and other cloud-native-related projects. 

experimenting with and incorporating new technologies. For instance, attempting a new infrastructure 
framework often requires rewriting the entire application, which becomes risky and impractical. 
Consequently, the technology choices made at the project's outset tend to become fixed. Additionally, 
scaling individual portions of the application is challenging, if not impossible, as all the application code 
operates within the server process on the server. To deploy new changes to one application component, 
you have to build and deploy the entire monolith, which can be complex, risky, and time-consuming, require 
the coordination of many developers, and result in long testing cycles.

In cases where one service demands significant memory resources and another is CPU intensive, provisio-
ning the server necessitates allocating sufficient memory and CPU capacity to accommodate the baseline 
load for each service. This expense can escalate, especially if each server requires substantial amounts of 
CPU and RAM, and the situation is further aggravated when load balancing is employed to scale the appli-
cation horizontally. In other words, the monolithic architecture can’t be scaled to support large, long-lived 
applications. A huge monolithic application can quickly become a delicate house of cards where a fault in 
one minor part of the application can bring the whole system down.

Cloud Native Multi Tenant Load Balancing

/3



Each service is relatively small, with a more understandable codebase for developers. This enhances 
developer productivity since we are now only focusing on a subset of the application; IDE is more 
efficient, and running and testing the application is less time-consuming.

Since each service is isolable and not dependent on other services, developers can work on a specific 
service in isolation without being dependent on different teams or silos within an organization. This 
makes continuous development, testing, and deployment easy and greatly attractive.

The biggest advantage of this architecture that affects all different silos within an organization; 
developers, operations, and management, is the ability to configure scaling, underlying hardware, and 
resource requirements(CPU, GPU, or memory intensive) per service. This can greatly enhance the 
throughput of these applications while reducing the cost incurred.

This architecture has several benefits

Cloud Native Multi Tenant Load Balancing

/4



X-axis scaling: Horizontal scaling involves running multiple copies of the entire application 
behind a load balancer. Each instance of the application is referred to as a horizontal slice. 
This is the most common form of scaling for web applications.

Y-axis scaling: Vertical scaling involves splitting the application into different parts, each 
running on a separate machine. This is the most common form of scaling for microservices.

Z-axis scaling: Also known as functional decomposition, involves splitting the application 
into different parts, with each part running on a separate machine. This is the most common 
form of scaling for microservices.

The most common representation of scaling an application is the “Scale Cube,” a three-dimensional 
scalability model popularized by the book “The Art of Scalability.” In this model of scalability, the three 
dimensions are X-axis, Y-axis, and Z-axis:

Scaling Microservices along X, Y & Z axes

Cloud Native Multi Tenant Load Balancing

/5



Rise of Containerization and Orchestration Tools
As microservices became more prevalent, tools like Docker, Docker Swarm, and Kubernetes emerged to 
simplify deployment and scaling. Docker revolutionized containerization, enabling consistent environ-
ments across development and production. Docker Swarm built on this by providing native clustering 
and orchestration, easing X and Y axis scaling for more straightforward applications. 

Kubernetes advanced these capabilities, offering robust orchestration, management, and scalability for 
complex, distributed microservices architectures. Its powerful features, such as automated scaling, 
self-healing, and rolling updates, addressed many challenges associated with deploying and managing 
microservices at scale, making it the de facto go-to platform for deploying and managing microservices 
in the industry.

Challenges with Kubernetes 

While Kubernetes significantly simplifies the orchestration and management of containerized 
applications, it introduces new challenges, particularly in multi-cluster and multi-tenant environments. 
Kubernetes provides interfaces for Layer 4 and Layer 7 load balancing in the form of Services and 
Ingresses. Still, they offer limited capabilities and depend on the cloud provider or ingress provider to 
implement them. This makes us dependent on the provider for advanced features like traffic splitting, 
traffic shaping, and observability. Managing network traffic, ensuring application security, and 
maintaining high performance across different clusters and clouds can be complex and 
resource-intensive. Traditional load balancers often struggle to keep up with the dynamic nature of 
microservices, leading to inefficiencies and increased operational overhead. These challenges highlight 
the need for a more advanced solution to effectively manage the data plane and optimize application 
delivery in cloud-native environments.

As applications grow in complexity and scale over time, some mission-critical applications may 
necessitate multi-cluster deployments. To address these challenges, enterprises began adopting 
multi-Kubernetes cluster architectures. Organizations achieved enhanced fault tolerance, improved 
performance, and better regulatory compliance by deploying multiple Kubernetes clusters across 
regions, availability zones, or cloud providers. This again introduced new challenges, such as managing 
various clusters, ensuring consistent policies, and providing seamless communication between 
applications hosted on multiple clusters. Kubernetes doesn’t natively possess these capabilities and 
requires additional tools to address these challenges.

Cloud Native Multi Tenant Load Balancing

/6



Introducing KubeLB
KubeLB is a software-based next-generation application delivery platform with integrated analytics, 
which provides secure, reliable, and scalable network services for cloud applications. At the heart of 
KubeLB is a revolutionary architecture based on SDN principles, separating the data plane from the 
control plane – an industry first for Application Delivery Controllers and Load Balancers. KubeLB enables 
seamless scaling of application delivery services within and across data centers and cloud locations 
while maintaining a single point of management and control. Load balancer operates as a service, so 
you can have multiple customers using the same software. It detects the customer environment and 
acts accordingly.

Cloud Native Multi Tenant Load Balancing

/7



Distributed Architecture
The distributed load balancers implemented by high-performance Cilium and Envoy provide 
comprehensive application delivery services such as load balancing, application acceleration, and 
application security. Cilium and Envoy can be co-located with applications within and across cloud 
locations and grouped for higher performance. 

Using KubeLB’s rich data, control, and management plane services, Cilium and Envoy can be placed 
close to the application’s microservices and grouped for higher performance and faster client responses. 
The integrated data collectors gather end-to-end timing, metrics, and logs for each user-to-app 
transaction. These provide actionable insights about end-user experience, application performance, 
infrastructure utilization, and anomalous behavior, which can be used to better architect the application 
being served.

Cloud Native Multi Tenant Load Balancing

/8



Analytics-driven application delivery

As the demand for a particular microservice application grows, KubeLB’s unique distributed architecture 
allows the KubeLB Service Engines to be scaled out automatically without human intervention.
KubeLB engines constantly monitor the traffic patterns of each microservice application. When a (custo-
mizable) threshold is met, the newly scaled-out Cilium and Envoy handle the increasing traffic load 
seamlessly.
Furthermore, the Inline Analytics engines can send a trigger based on ambient loads to scale up/down 
the backend microservices applications.
Finally, the distributed microservices architecture allows the Cilium and Envoy attached to each micro-
service to be scaled out independently of other microservices.

Elastic Scale

The Elastic data plane of 'KubeLB' can dynamically scale 
out and scale in to meet the real-time requirements of 
microservice-based applications across 100s of tenants 
and 1000s of applications. Cilium and Envoy allow 
network services for each Microservice to be individually 
scaled out/in or up/down.

Application Affinity

Cilium and Envoy are placed close to microservices 
applications for best app performance and minimal traffic 
tromboning in the network. Whether microservices are 
inside a single physical server, in different servers but in a 
single data center, or even across different data centers, 
Cilium and Envoy automatically discover and locate 
themselves in the closest possible proximity to each 
microservice.

Cloud Native Multi Tenant Load Balancing

/9



Dataplane Isolation for Tenants 
and Applications

To avoid sharing appliances between critical applications, 
tenants and applications are allocated their own Service 
Engines for data plane isolation. This eliminates the ‘noisy 
neighbor’ problem wherein a rogue microservice or tenant 
could potentially impact the performance of an adjacent 
application. KubeLB’s per-tenant, dedicated micro load 
balancers deliver true multi-tenant application services.

Programmability

All interactions with the KubeLB Controller are through 
native Kubernetes APIs, which enable native integration 
with Kubectl. DevOps automation tools like Crossplane, 
Terraform, or Ansible are also natively supported.

N-Way Active Redundancy

Using redundancy principles from web-scale 
datacenters, KubeLB provides N-Way Active-Active 
redundancy along with Active-Active and Active-Standby 
availability options.

Cloud Native Multi Tenant Load Balancing

/10



Putting it all together:

How Load Balancers/ADCs Need to Evolve – the Mantle 
for True Software-Defined Networks

Here are our views on the specific steps required to evolve application delivery for modern data center 
requirements:

Each group of Cilium and Envoy can be associated with a specific tenant, so in a multi-tenant 
environment, traffic for a particular application is isolated to that tenant’s group of Cilium and Envoy. 

KubeLB can manage multiple groups of Cilium and Envoys. Kubernetes’s role-based access control 
mechanism ensures that users logged into a particular tenant can only view the details of that particular 
tenant.

Cloud Native Multi Tenant Load Balancing

/11



Step No. 1 In terms of architecture, there needs to be a complete and true separation of 
control and data plane within the ADC with the ability to distribute data plane 
resources dynamically across different hardware platforms and public/private 
clouds, exactly how application microservices can be distributed.

Achieving data plane independence (isolation) to enable multi-tenancy, 
especially in cloud environments. This aligns with how microservices can 
operate and be changed independently of each other without disrupting other 
microservices or the “no noisy neighbor” impact.

ADCs must achieve the “application affinity” concept based on the app-world 
“processor affinity” concept, where resources are aligned/pinned for specific 
functions. This approach offers two significant advantages. First, the 
microservice will enhance the application response time by colocating the 
ADC resource alongside. Second, this tight alignment (affinity) enables ADC 
resources to achieve automatic microservices lifecycle management without 
manual intervention, significantly reducing management complexity.

Fulfilling the self-service programmability and efficiency promises of SDN. 
Most, if not all, ADC vendors today support REST (representational state 
transfer), the protocol of choice in hyperscale web services. However, only 
through a true control/data plane separation and the complete 
centralization of the control functions can the ADC achieve the real promise 
of SDN by enabling one-to-one communications between its controller and 
the application’s control elements through RESTful APIs.

Step No. 2

Step No. 3

Step No. 4

Cloud Native Multi Tenant Load Balancing

/12



Summary
The architecture of how applications are developed today has evolved from purpose-built, monolithic 
(“shrink-wrapped”) code and products to a tightly federated collection of modular and reusable micro-
services. It’s as if app developers moved to using a common set of Lego blocks to build any number of 
web-based apps only limited by their imagination. The move to microservice-app development for 
networking teams means their existing assumptions around traffic patterns, load balancing scale, and 
service requirements are no longer valid. An increased level of network-wide intelligence and a new 
application delivery architecture that mirrors the microservice apps are required. KubeLB is an elastically 
scalable load balancer with a distributed data plane that can span, serve, and scale with apps across 
various on-premise and cloud locations. The distributed data plane empowers customers to obtain 
application affinity at the application microservice levels, thus significantly enhancing the overall appli-
cation performance. In addition, the clean separation of planes also enables the creation of a unified, 
centralized control plane that significantly alleviates the operational complexity associated with integra-
ting, operating, and managing each ADC appliance across locations individually. 

In summary, KubeLB is a highly flexible, cost-focused, scalable, and efficient load balancer, particularly 
suited to multi-tenant service providers.

Case-study

How can a flexible Load Balancer defined by a software adjust 
over time to evolving changes in application architectures?

In the early stages, the company focuses predominantly on low complexity and overhead, leading 
to rapid software development and many features. The need to rush to market to deliver proof of 
concept features to customers implies developers typically do not have the luxury of designing 
the application for scalability, high availability, and redundancy. The application can typically be 
deployed on web and database servers. With KubeLB ADC, high availability and scalability can be 
quickly achieved by running the application on a pair of web servers behind a pair of load 
balancers. This also keeps the operation costs to a minimum.

Stage 1

Cloud Native Multi Tenant Load Balancing

/13



Not sure about where to start? We'll meet you 
where you are and provide a customized 

solution to meet your specific needs.
Visit our Website

As the demand for the business grows, the company can scale quickly by adding more resources 
(X-axis scaling) behind KubeLB ADC. As the number of web servers grows, static content 
management can become a challenge but can be mitigated using caching engines on the 
KubeLB ADC. As the popularity of the company and its product grows, the need to scale and 
perform better leads to rearchitecting the application to break it into smaller applications along 
the lines of services/functions. Database partitions start to make sense, and partitions evolve 
along geographical locations, names, etc.

With KubeLB’s future-proof security-focused design, the same ADC used on day 1 of the 
application deployment can still be used as the traffic to the application grows. Once the need to 
serve the application grows, so does the SLA needed to maintain it, and the application gets 
deployed in multiple locations. One instance of KubeLB can serve applications from a local data 
center and in the cloud. KubeLB’s centralized control and management interface makes managing 
all the load-balanced applications easy.

Stage 2

Stage 2

Cloud Native Multi Tenant Load Balancing

/14

https://www.kubermatic.com/

